Sabtu, 27 Juni 2009

GAYA

Gaya (fisika)

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Langsung ke: navigasi, cari
Artikel bertopik fisika ini perlu dirapikan agar memenuhi standar Wikipedia
Merapikan artikel bisa berupa membagi artikel ke dalam paragraf atau wikifikasi artikel. Setelah dirapikan, tolong hapus pesan ini.

Di dalam ilmu fisika, gaya atau kakas adalah apapun yang dapat menyebabkan sebuah benda bermassa mengalami percepatan.[1]. Gaya memiliki besar dan arah, sehingga merupakan besaran vektor. Satuan SI yang digunakan untuk mengukur gaya adalah Newton (dilambangkan dengan N). Berdasarkan Hukum kedua Newton, sebuah benda dengan massa konstan akan dipercepat sebanding dengan gaya netto yang bekerja padanya dan berbanding terbalik dengan massanya.

\vec{a} =\frac{\vec{F}}{m}

Penjelasan lain yang mirip, gaya netto yang bekerja pada sebuah benda adalah sebanding dengan laju perubahan momentum yang dialaminya.[2]

\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{dt}} = \frac{\mathrm{d}(m \vec{v})}{\mathrm{dt}} = \frac{\mathrm{d}m}{\mathrm{dt}}\vec{v}+m\frac{\mathrm{d}\vec{v}}{\mathrm{dt}}
=\frac{\mathrm{d}m}{\mathrm{dt}}\frac{\mathrm{d}\vec{x}}{\mathrm{dt}}+m\frac{\mathrm{d}^2\vec{x}}{\mathrm{dt}^2}

Gaya bukanlah sesuatu yang pokok dalam ilmu fisika, meskipun ada kecenderungan untuk memperkenalkan ilmu fisika lewat konsep ini. Yang lebih pokok ialah momentum, energi dan tekanan. Sebenarnya, tak seorang pun dapat mengukur gaya secara langsung. Tetapi, kalau sesuatu mengatakan seseorang mengukur gaya, sedikit berpikir akan membuat seseorang menyadari bahwa apa yang diukur sebenarnya adalah tekanan (atau mungkin kemiringannya). "Gaya" yang Anda rasakan saat meraba kulit anda, misalnya, sebenarnya adalah sel syaraf tekanan Anda yang mendapat perubahan tekanan. Ukuran neraca pegas mengukur ketegangan pegas, yang sebenarnya adalah tekanannya, dll.

Dalam bahasa sehari-hari gaya dikaitkan dengan dorongan atau tarikan, mungkin dikerahkan oleh otot-otot kita.

Di fisika, kita memerlukan definisi yang lebih presisi. Kita mendefinisikan gaya di sini dalam hubungannya dengan percepatan yang dialami benda standar yang diberikan ketika ditempatkan di lingkungan sesuai.

Sebagai benda standar kita menggunakan (atau agaknya membayangkan bahwa kita menggunakannya!) silinder platinum yang disimpan di International Bureau of Weights and Measures dekat Paris dan disebut kilogram standar.

Di fisika, gaya adalah aksi atau agen yang menyebabkan benda bermassa bergerak dipercepat. Hal ini mungkin dialami sebagai angkatan, dorongan atau tarikan. Percepatan benda sebanding dengan penjumlahan vektor seluruh gaya yang beraksi padanya (dikenal sebagai gaya netto atau gaya resultan).

Dalam benda yang diperluas, gaya mungkin juga menyebabkan rotasi, deformasi atau kenaikan tekanan terhadap benda. Efek rotasi ditentukan oleh torka, sementara deformasi dan tekanan ditentukan oleh stres yang diciptakan oleh gaya.

Gaya netto secara matematis sama dengan laju perubahan momentum benda dimana gaya beraksi. Karena momentum adalah kuantitas vektor (memiliki besar dan arah), gaya adalah juga kuantitas vektor.

Konsep gaya telah membentuk bagian dari statika dan dinamika sejak zaman kuno. Kontribusi kuno terhadap statika berpuncak dalam pekerjaan Archimedes di abad ke tiga sebelum Masehi, yang masih membentuk bagian fisika modern.

Sebaliknya, dinamika Aristoteles disatukan kesalahpahaman intuisi peranan gaya yang akhirnya dikoreksi dalam abad ke 17, berpuncak dalam pekerjaan Isaac Newton.

Menurut perkembangan mekanika kuantum, sekarang dipahami bahwa partikel saling mempengaruhi satu sama lain melalui interaksi fundamental, menjadikan gaya sebagai konsep yang berguna hanya pada konsep makroskopik.

Hanya empat interaksi fundamental yang dikenal: kuat, elektromagnetik, lemah (digabung menjadi satu interaksi elektrolemah pada tahun 1970-an), dan gravitasi (dalam urutan penurunan kuat interaksi).

Daftar isi

[sembunyikan]

[sunting] Sejarah

Aristoteles dan pengikutnya meyakini bahwa keadaan alami objek di bumi tak bergerak dan bahwasannya objek-objek tersebut cenderung ke arah keadaan tersebut jika dibiarkan begitu saja. Aristoteles membedakan antara kecenderungan bawaan objek-objek untuk menemukan “tempat alami” mereka (misal benda berat jatuh), yang menuju “gerak alami”, dan tak alami atau gerak terpaksa, yang memerlukan penerapan kontinyu gaya.

Namun teori ini meskipun berdasarkan pengalaman sehari-hari bagaimana objek bergerak (misal kuda dan pedati), memiliki kesulitan perhitungan yang menjengkelkan untuk proyektil, semisal penerbangan panah.

Beberapa teori telah dibahas selama berabad-abad, dan gagasan pertengahan akhir bahwa objek dalam gerak terpaksa membawa gaya dorong bawaan adalah pengaruh pekerjaan Galileo.

Galileo melakukan eksperimen dimana batu dan peluru meriam keduanya digelindingkan pada suatu kecuraman untuk membuktikan kebalikan teori gerak Aristoteles pada awal abad 17.

Galileo menunjukkan bahwa benda dipercepat oleh gravitasi yang mana tak gayut massanya dan berargumentasi bahwa objek mempertahankan kecepatan mereka jika tidak dipengaruhi oleh gaya - biasanya gesekan.

Isaac Newton dikenal sebagai pembantah secara tegas untuk pertama kalinya, bahwa secara umum, gaya konstan menyebabkan laju perubahan konstan (turunan waktu) dari momentum. Secara esensi, ia memberi definisi matematika pertama kali dan hanya definisi matematika dari kuantitas gaya itu sendiri - sebagai turunan waktu momentum: F = dp/dt.

Pada tahun 1784 Charles Coulomb menemukan hukum kuadrat terbalik interaksi antara muatan listrik menggunakan keseimbangan torsional, yang mana adalah gaya fundamental kedua.

Gaya nuklir kuat dan gaya nuklir lemah ditemukan pada abad ke 20. Dengan pengembangan teori medan kuantum dan relativitas umum, disadari bahwa “gaya” adalah konsep berlebihan yang muncul dari kekekalan momentum (momentum 4 dalam relativitas dan momentum partikel virtual dalam elektrodinamika kuantum).

Dengan demikian sekarang ini dikenal gaya fundamental adalah lebih akurat disebut “interaksi fundamental”.

[sunting] Jenis-jenis Gaya

Meskipun terdapat dengan jelas banyak tipe gaya di alam semesta, mereka seluruhnya berbasis pada empat gaya fundamental. Gaya nuklir kuat dan gaya nuklir lemah hanya beraksi pada jarak yang sangat pendek dan bertanggung jawab untuk “mengikat” nukleon tertentu dan menyusun nuklir. Gaya elektromagnetik beraksi antara muatan listrik dan gaya gravitasi beraksi antara massa.

Prinsip perkecualian Pauli bertanggung jawab untuk kecenderungan atom untuk tak “bertumpang tindih” satu sama lain, dan adalah jadinya bertanggung jawab untuk “kekakuan” materi, namun hal ini juga bergantung pada gaya elektromagnetik yang mengikat isi-isi setiap atom.

Seluruh gaya yang lain berbasiskan pada keempat gaya ini. Sebagai contoh, gesekan adalah perwujudan gaya elektromagnetik yang beraksi antara atom-atom dua permukaan, dan prinsip perkecualian Pauli, yang tidak memperkenankan atom-atom untuk menerobos satu sama lain.

Gaya-gaya dalam pegas dimodelkan oleh hukum Hooke adalah juga hasil gaya elektromagnetik dan prinsip perkecualian Pauli yang beraksi bersama-sama untuk mengembalikan objek ke posisi keseimbangan. Gaya sentrifugal adalah gaya percepatan yang muncul secara sederhana dari percepatan rotasi kerangka acuan.

Pandangan mekanika kuantum modern dari tiga gaya fundamental pertama (seluruhnya kecuali gravitasi) adalah bahwa partikel materi (fermion) tidak secara langsung berinteraksi dengan satu sama lain namun agaknya dengan mempertukarkan partikel virtual (boson). Hasil pertukaran ini adalah apa yang kita sebut interaksi elektromagnetik (gaya Coulomb adalah satu contoh interaksi elektromagnetik).

Dalam relativitas umum, gravitasi tidaklah dipandang sebagai gaya. Melainkan, objek yang bergerak secara bebas dalam medan gravitasi secara sederhana mengalami gerak inersia sepanjang garis lurus dalam ruang-waktu melengkung - didefinisikan sebagai lintasan ruang-waktu terpendek antara dua titik ruang-waktu. Garis lurus ini dalam ruang-waktu dipandang sebagai garis lengkung dalam ruang, dan disebut lintasan balistik objek. Sebagai contoh, bola basket yang dilempar dari landasan bergerak dalam bentuk parabola sebagaimana ia dalam medan gravitasi serba sama.

Lintasan ruang-waktunya (ketika dimensi ekstra ct ditambahkan) adalah hampir garis lurus, sedikit melengkung (dengan jari-jari kelengkungan berorde sedikit tahun cahaya). Turunan waktu perubahan momentum dari benda adalah apa yang kita labeli sebagai “gaya gravitasi”.

Contoh:

  • Objek berat dalam keadaan jatuh bebas. Perubahan momentumnya sebagaimana

dp/dt = mdv/dt = ma =mg (jika massa m konstan), jadi kita sebut kuantitas mg “gaya gravitasi” yang beraksi pada objek. Hal ini adalah definisi berat (W = mg) objek.

  • Objek berat di atas meja ditarik ke bawah menuju lantai oleh gaya gravitasi (yakni beratnya). Pada waktu yang sama, meja menahan gaya ke bawah dengan gaya ke atas yang sama (disebut gaya normal), menghasilkan gaya netto nol, dan tak ada percepatan. (Jika objek adalah orang, ia sesungguhnya merasa aksi gaya normal terhadapnya dari bawah.)
  • Objek berat di atas meja dengan lembut didorong dalam arah menyamping oleh jari-jari.
  • Akan tetapi, ia tidak pindah karena gaya dari jari-jari tangan pada objek sekarang dilawan oleh gaya baru gesekan statis, dibangkitkan antara objek dan permukaan meja.
  • Gaya baru terbangkitkan ini secara pasti menyeimbangkan gaya yang dikerahkan pada objek oleh jari, dan lagi tak ada percepatan yang terjadi.
  • Gesekan statis meningkat atau menurun secara otomatis. Jika gaya dari jari-jari dinaikkan (hingga suatu titik), gaya samping yang berlawanan dari gesekan statis meningkat secara pasti menuju titik dari posisi sempurna.
  • Objek berat di atas meja didorong dengan jari cukup keras sehingga gesekan statis tak dapat membangkitkan gaya yang cukup untuk menandingi gaya yang dikerahkan oleh jari, dan objek mulai terdorong melintasi permukaan meja. Jika jari dipindah dengan kecepatan konstan, ini perlu untuk menerapkan gaya yang secara pasti membatalkan gaya gesek kinetik dari permukaan meja dan kemudian objek berpindah dengan kecepatan konstan yang sama. Kecepatan adalah konstan hanya karena gaya dari jari dan gesekan kinetik saling menghilangkan satu sama lain. Tanpa gesekan, objek terus-menerus bergerak dipercepat sebagai respon terhadap gaya konstan.
  • Objek berat mencapai tepi meja dan jatuh. Sekarang objek, yang dikenai gaya konstan dari beratnya, namun dibebaskan dari gaya normal dan gaya gesek dari meja, memperoleh dalam kecepatannya dalam arah sebanding dengan waktu jatuh, dan jadinya (sebelum ia mencapai kecepatan dimana gaya tahanan udara menjadi signifikan dibandingkan dengan gaya gravitasi) laju perolehan momentum dan kecepatannya adalah konstan. Fakta ini pertama kali ditemukan oleh Galileo.
  • Objek berat suspended pada timbangan. Karena objek tidak bergerak (sehingga turunan waktu dari momentumnya adalah nol) maka selama percepatan jatuh bebas g ia harus mengalami percepatan yang diarahkan sama dan berlawanan a = -g dikarenakan aksi pegas.
  • Percepatan ini dikalikan dengan massa objek adalah apa yang kita labeli sebagai “gaya reaksi pegas” yang mana secara nyata sama dan berlawanan dengan berat objek mg.
  • Mengetahui massa (katakanlah, 1 kg) dan percepatan jatuh bebas (katakanlah, 9,8 meter/detik2) kita dapat menentukan timbangan dengan tanda “9,8 N”. Pasang beragam massa (2 kg, 3 kg, …) kita dapat mengkalibrasi timbangan dan kemudian menggunakan skala tertentu ini untuk mengukur banyak gaya yang lain (gesek, gaya reaksi, gaya listrik, gaya magnetik, dst).

[sunting] Definisi Kuantitatif

Kita memiliki pemahaman intuitif ide gaya, karena gaya dapat secara langsung dirasakan sebagai dorongan atau tarikan. Sebagaimana dengan konsep fisika yang lain (misal temperatur), ide intuitif dikuantifikasi menggunakan definisi operasional yang konsisten dengan persepsi langsung, namun lebih presisi.

Secara historis, gaya pertama kali secara kuantitatif diselidiki dalam keadaan keseimbangan statis dimana beberapa gaya membatalkan satu sama lain. Eksperimen demikian membuktikan sifat-sifat yang rumit bahwa gaya adalah kuantitas vektor aditif: mereka memiliki besar dan arah. Sehingga, ketika dua gaya berkasi pada suatu objek, gaya hasil, resultan, adalah penjumlahan vektor gaya asal. Hal ini disebut prinsip superposisi. Besar resultante bervariasi dari perbedaan besar dua gaya terhadap penjumlahan mereka, gayut sudut antara garis-garis aksi mereka.

Sebagaimana dengan seluruh penambahan vektor hasil-hasil ini dalam aturan jajaran genjang: penambahan dua vektor yang diwakili oleh sisi-sisi jajaran genjang, memberi vektor resultan ekivalen yang sama dalam besar dan arah terhadap transversal jajaran genjang.

Sebagaimana dapat ditambahkan, gaya juga dapat diuraikan (atau dipecah). Sebagai contoh, gaya horisontal menunjuk timur laut dapat dipecah menjadi dua gaya, satu menunjuk ke utara dan satu menunjuk timur. Jumlahkan komponen-komponen gaya ini menggunakan penambahan vektor menghasilkan gaya asal. Vektor-vektor gaya dapat juga menjadi tiga dimensi, dengan komponen ketiga (vertikal) pada penjuru sudut terhadap dua komponen horisontal.

Kasus paling sederhana dari keseimbangan statis adalah ketika dua gaya adalah sama dalam besar namun berlawanan arah. Ini menyisakan cara yang paling biasa dari pengukuran gaya, menggunakan peralatan sederhana semisal timbangan berat dan neraca pegas. Menggunakan peralatan demikian, beberapa hukum gaya kuantitatif ditemukan: gaya gravitasi sebanding dengan volume objek yang terdiri dari material (secara luas dimanfaatkan saat ini untuk mendefinisikan standar berat); prinsip Archimedes untuk gaya apung; analisis Archimedes dari pengungkit; hukum Boyle untuk tekanan gas; dan hukum Hooke untuk pegas: seluruhnya diformulasikan dan secara eksperimental dibuktikan sebelum Isaac Newton menguraikan secara rinci tiga hukum geraknya.

Gaya terkadang didefinisikan menggunakan hukum kedua Newton, sebagai perkalian massa m kali percepatan atau lebih umum, sebagai laju perubahan momentum. Pendekatan ini diabaikan oleh sejumlah besar buku teks.

Dengan pertimbangan yang lebih, hukum kedua Newton dapat diambil sebagai definisi kuantitatif massa; secara pasti dengan menuliskan hukum sebagai persamaan, satuan relatif gaya dan massa ditetapkan.

Sukses empirik yang diberikan hukum Newton, hal itu terkadang digunakan untuk mengukur kuat gaya (sebagai contoh, menggunakan orbit astronomi untuk menentukan gaya gravitasi).

[sunting] Gaya dalam Relativitas Khusus

Dalam teori relativitas khusus, massa dan energi adalah sama (sebagaimana dapat dilihat dengan menghitung kerja yang diperlukan untuk mempercepat benda). Ketika kecepatan suatu objek meningkat demikian juga energinya dan oleh karenanya ekivalensi massanya (inersia). Hal ini memerlukan gaya yang lebih besar untuk mempercepat benda sejumlah yang sama daripada itu lakukan pada kecepatan yang lebih rendah. Definisi masih valid.

[sunting] Gaya dan Potensial

Disamping gaya, konsep yang sama secara matematis dari medan energi potensial dapat digunakan untuk kesesuaian. Sebagai contoh, gaya gravitasi yang beraksi pada suatu benda dapat dipandang sebagai aksi medan gravitasi yang hadir pada lokasi benda. Pernyataan ulang secara matematis definisi energi (melalui definisi kerja), medan skalar potensial didefinisikan sebagai medan yang mana gradien adalah sama dan berlawanan dengan gaya yang dihasilkan pada setiap setiap titik.

Gaya dapat diklasifikasi sebagai konservatif atau non konservatif. Gaya konservatif sama dengan gradien potensial.

[sunting] Gaya konservatif

Gaya konservatif yang beraksi pada sistem tertutup memiliki sebuah kerja mekanis terkait yang memperkenankan energi untuk mengubah hanya antara bentuk kinetik atau potensial.

Hal ini berarti bahwa untuk sistem tertutup, energi mekanis netto adalah kekal kapan pun gaya konservatif beraksi pada sistem.

Gaya, oleh karena itu, terkait secara langsung dengan perbedaan energi potensial antara dua lokasi berbeda dalam ruang dan dapat ditinjau sebagai artifak, benda (artifact) medan potensial dalam cara yang sama bahwa arah dan jumlah aliran air dapat ditinjau sebagai artifak pemetaan kontur (contour map) dari ketinggian area.

Gaya konservatif meliputi gravitasi, gaya elektromagnetik, dan gaya pegas. Tiap-tiap gaya ini, oleh karena itu, memiliki model yang gayut pada posisi seringkali diberikan sebagai vektor radial eminating dari potensial simetri bola.

[sunting] Gaya non konservatif

Untuk skenario fisis tertentu, adalah tak mungkin untuk memodelkan gaya sebagaimana dikarenakan gradien potensial.

Hal ini seringkali dikarenakan tinjauan makrofisis yang mana menghasilkan gaya sebagai kemunculan dari rata-rata statistik makroskopik dari keadaan mikro. Sebagai contoh, friksi disebabkan oleh gradien banyak potensial elektrostatik antara atom-atom, namun mewujud sebagai model gaya yang tak gayut sembarang vektor posisi skala makro.

Gaya non konservatif selain friksi meliputi gaya kontak yang lain, tegangan, tekanan, dan seretan (drag). Akan tetapi, untuk sembarang deskripsi detil yang cukup, seluruh gaya ini adalah hasil gaya konservatif karena tiap-tiap gaya makroskopis ini adalah hasil netto gradien potensial mikroskopis.

Hubungan antara gaya non konservatif makroskopis dan gaya konservatif mikroskopis dideskripsikan oleh perlakuan detil dengan mekanika statistik. Dalam sistem tertutup makroskopis, gaya non konservatif beraksi untuk mengubah energi internal sistem dan seringkali dikaitkan dengan transfer panas.

Menurut Hukum Kedua Termodinamika, gaya non konservatif hasil yang diperlukan dalam transformasi energi dalam sistem tertutup dari kondisi terurut menuju kondisi lebih acak sebagaimana entropi meningkat.

[sunting] Satuan Ukuran

Satuan SI yang digunakan untuk mengukur gaya adalah newton (simbol N), yang mana adalah ekivalen dengan kg.m.s-2. Satuan CGS lebih awal adalah dyne. Hubungan F = m.a dapat digunakan dengan yang mana pun.

[sunting] Referensi

  1. ^ glossary. Earth Observatory. NASA. Diakses pada 2008-04-09 Kutipan: Force: Any external agent that causes a change in the motion of a free body, or that causes stress in a fixed body.
  2. ^ See for example pages 9-1 and 9-2 of Feynman, Leighton and Sands (1963).

gelombang elektromagnetik

SEJARAH GELOMBANG ELEKTROMAGNETIK

Posted on June 5, 2009 - Filed Under G E M |

A. Spektrum Gelombang Elektromagnetik
1. Hakikat Gelombang Elektromagnetik
Pada pertengahan abad ke sepuluh seorang ilmuwan Mesir di Iskandaria yang bernama Al Hasan (965-1038) mengemukakan pendapat bahwa mata dapat melihat benda-benda di sekeliling karena adanya cahaya yang dipancarkan atau dipantulkan oleh benda-benda yang bersangkutan masuk ke dalam mata. Teori ini akhirnya dapat diterima oleh orang banyak sampai sekarang ini.
Beberapa teori-teori yang mendukung pendapat Al Hasan diantaranya adalah

a. Teori Emisi atau Teori Partikel
Sir Isaac Newton (1642-1727) merupakan ilmuwan berkebangsaan Inggris yang mengemukakan pendapat bahwa dari sumber cahaya dipancarkan partikel-partikel yang sangat kecil dan ringan ke segala arah dengan kecepatan yang sangat besar. Bila partikel-partikel ini mengenai mata, maka manusia akan mendapat kesan melihat benda tersebut.
Alasan dikemukakanya teori ini adalah sebagai berikut:

  • Karena partikel cahaya sangat ringan dan berkecepatan tinggi maka cahaya dapat merambat lurus tanpa terpengaruh gaya gravitasi bumi.
  • Ketika cahaya mengenai permukaan yang halus maka cahaya akan akan dipantulkan dengan sudut sinar datang sama dengan sudut sinar pantul sehingga sesuai dengan hukum pemantulan Snellius. Peristiwa pemantulan ini dijelaskan oleh Newton dengan menggunakan bantuan sebuah bola yang dipantulkan di atas bidang pantul.
  • Alasan berikutnya adalah pada peristiwa pembiasan cahaya yang disamakan dengan peristiwa menggelindingnya sebuah bola pada papan yang berbeda ketinggian yang dihubungkan dengan sebuah bidang miring. Dari permukaan yang lebih tinggi bola digelindingkan dan akan terus menggelinding melalui bidang miring sampai akhirnya bola akan menggelinding di permukaan yang lebih rendah. Jika diamati perjalanan bola, maka sebelum melewati bidang miring lintasan bola akan membentuk sudut α terhadap garis tegak lurus pada bidang miring. Setelah melewati bidang miring lintasan bola akan membentuk sudut β terhadap garis tegak lurus pada bidang miring. Jika permukaan atas dianggap sebagai udara dan permukaan bawah dianggap sebagai air serta bidang miring merupakan batas antara udara dan air, gerak bola dianggap sebagai jalannya pembiasan cahaya dari udara ke air, maka Newton menganggap bahwa kecepatan cahaya dalam air lebih besar dari pada kecepatan cahaya dalam udara.

Pendapat ini masih bertahan hingga akhirnya seorang ahli fisika Prancis, Jean Focault (1819 - 1868) melakukan percobaan tentang pengukuran kecepatan cahaya dalam berbagai medium. Dalam percobaannya Jeans Focault mendapatkan kesimpulan bahwa kecepatan cahaya dalam air lebih kecil dari pada kecepatan cahaya dalam udara.

b. Teori Gelombang


Menurut Christian Huygens (1629-1695) seorang ilmuwan berkebangsaan Belanda, bahwa cahaya pada dasarnya sama dengan bunyi dan berupa gelombang. Perbedaan cahaya dan bunyi hanya terletak pada panjang gelombang dan frekuensinya.
Pada teori ini Huygens menganggap bahwa setiap titik pada sebuah muka gelombang dapat dianggap sebagai sebuah sumber gelombang yang baru dan arah muka gelombang ini selalu tegak lurus tehadap muka gelombang yang bersangkutan.
Pada teori Huygens ini peristiwa pemantulan, pembiasan, interferensi, ataupun difraksi cahaya dapat dijelaskan secara tepat, namun dalam teori Huygens ada kesulitan dalam penjelasan tentang sifat cahaya yang merambat lurus.

c. Teori Elektromagnetik


Percobaan James Clerk Maxwell (1831 - 1879) seorang ilmuwan berkebangsaan Inggris (Scotlandia) menyatakan bahwa cepat rambat gelombang elektromagnetik sama dengan cepat rambat cahaya yaitu 3×108 m/s, oleh karena itu Maxwell berkesimpulan bahwa cahaya merupakan gelombang elektromagnetik. Kesimpulan Maxwell ini di dukung oleh :

  • Seorang ilmuwan berkebangsaan Jerman, Heinrich Rudolph Hertz (1857 - 1894) yang membuktikan bahwa gelombang elektromagnetik merupakan gelombang tranversal. Hal ini sesuai dengan kenyataan bahwa cahaya dapat menunjukkan gejala polarisasi.
  • Percobaan seorang ilmuwan berkebangsaan Belanda, Peter Zeeman (1852 - 1943) yang menyatakan bahwa medan magnet yang sangat kuat dapat berpengaruh terhadap berkas cahaya.
  • Percobaan Stark (1874 - 1957), seorang ilmuwan berkebangsaan Jerman yang mengungkapkan bahwa medan listrik yang sangat kuat dapat mempengaruhi berkas cahaya.

d. Teori Kuantum

Teori kuantum pertama kali dicetuskan pada tahun 1900 oleh seorang ilmuwan berkebangsaan Jerman yang bernama Max Karl Ernst Ludwig Planck (1858 - 1947). Dalam percobaannya Planck mengamati sifat-sifat termodinamika radiasi benda-benda hitam hingga ia berkesimpulan bahwa energi cahaya terkumpul dalam paket-paket energi yang disebut kuanta atau foton. Dan pada tahun 1901 Planck mempublikasikan teori kuantum cahaya yang menyatakan bahwa cahaya terdiri dari peket-paket energi yang disebut kuanta atau foton. Akan tetapi dalam teori ini paket-paket energi atau partikel penyusun cahaya yang dimaksud berbeda dengan partikel yang dikemukakan oleh Newton . Karena foton tidak bermassa sedangkan partikel pada teori Newton memiliki massa
Pernyataan Planck ternyata mendapat dukungan dengan adanya percobaan Albert Einstein pada tahun 1905 yang berhasil menerangkan gejala fotolistrik dengan menggunakan teori Planck. Fotolistrik adalah peristiwa terlepasnya elektron dari suatu logam yang disinari dengan panjang gelombang tertentu. Akibatnya percobaan Einstein justru bertentangan dengan pernyataan Huygens dengan teori gelombangnya.Pada efek fotolistrik, besarnya kecepatan elektron yang terlepas dari logam ternyata tidak bergantung pada besarnya intensitas cahaya yang digunakan untuk menyinari logam tersebut. Sedangkan menurut teori gelombang seharusnya energi kinetik elektron bergantung pada intensitas cahaya.
Kemudian dari seluruh teori-teori cahaya yang muncul dapat disimpulkan bahwa cahaya mempunyai sifat dual (dualisme cahaya) yaitu cahaya dapat bersifat sebagai gelombang untuk menjelaskan peristiwa interferensi dan difraksi tetapi di lain pihak cahaya dapat berupa materi tak bermassa yang berisikan paket-paket energi yang disebut kuanta atau foton sehingga dapat menjelaskan peristiwa efek fotolistrik.

2. Gelombang Elektromagnetik

Beberapa kaidah tentang kemagnetan dan kelistrikan yang mendukung perkembangan konsep gelombang elektromagnetik antara lain:
1. Hukum Coulomb mengemukakan : “Muatan listrik statik dapat menghasilkan medan listrik.”.
2. Hukum Biot & Savart mengemukakan : “Aliran muatan listrik (arus listrik) dapat menghasilkan medan magnet”.
3. Hukum Faraday mengemukakan : “Perubahan medan magnet dapat menghasilkan medan listrik”.
Berdasarkan Hukum Faraday, Maxwell mengemukakan hipotesa sebagai berikut: “Perubahan medan listrik dapat menimbulkan medan magnet”. Hipotesa ini sudah teruji dan disebut dengan Teori Maxwell. Inti teori Maxwell mengenai gelombang elektromagnetik adalah:
a. Perubahan medan listrik dapat menghasilkan medan magnet.
b. Cahaya termasuk gelombang elektromagnetik. Cepat rambat gelombang elektromagnetik (c) tergantung dari permitivitas () dan permeabilitas (μ) zat.
Menurut Maxwell, kecepatan rambat gelombang elektromagnetik dirumuskan sebagai berikut c =
Ternyata perubahan medan listrik menimbulkan medan magnet yang tidak tetap besarannya atau berubah-ubah. Sehingga perubahan medan magnet tersebut akan menghasilkan lagi medan listrik yang berubah-ubah.
Proses terjadinya medan listrik dan medan magnet berlangsung secara bersamasama dan menjalar kesegala arah. Arah getar vektor medan listrik dan medan magnet saling tegak lurus. Jadi gelombang elektromagnetik adalah gelombang yang dihasilkan dari perubahan medan magnet dan medan listrik secara berurutan, dimana arah getar vektor medan listrik dan medan magnet saling tegak lurus.

E = medan listrik (menjalar vertikal)
B = medan magnet (menjalar horizontal.)
Gejala seperti ini disebut terjadinya gelombang elektromagnetik (= gelombang yang mempunyai medan magnet dan medan listrik).
Bila dalam kawat PQ terjadi perubahan-perubahan tegangan baik besar maupun arahnya, maka dalam kawat PQ elektron bergerak bolak-balik, dengan kata lain dalam kawat PQ terjadi getaran listrik. Perubahan tegangan menimbulkan perubahan medan listrik dalam ruangan disekitar kawat, sedangkan perubahan arus listrik menimbulkan perubahan medan magnet. Perubahan medan listrik dan medan magnet itu merambat ke segala jurusan. Karena rambatan perubahan medan magnet dan medan listrik secara periodik maka rambatan perubahan medan listrik dan medan magnet lazim disebut gelombang elektromagnetik. (GEM)
Percobaan-percobaan yang teliti membawa kesimpulan :
1. Pola gelombang elektromagnetik sama dengan pola gelombang transversal dengan vektor perubahan medan listrik tegak lurus pada vektor perubahan medan magnet.
2. Gelombang elektromagnetik menunjukkan gejala-gejala pemantulan, pembiasan, difraksi, polarisasi seperti halnya pada cahaya.
3. Diserap oleh konduktor dan diteruskan oleh isolator.
Gelombang elektromagnetik lahir sebagai paduan daya imajinasi dan ketajaman akal pikiran berlandaskan keyakinan akan keteraturan dan kerapian aturan-aturan alam.
Hasil-hasil percobaan yang mendahuluinya telah mengungkapkan tiga aturan gejala kelistrikan , antara lain sebagai berikut.
Hukum Coulomb : Muatan listrik menghasilkan medan listrik yang kuat.
Hukum Biot-Savart : Aliran muatan (arus) listrik menghasilkan medan magnet disekitarnya.
Hukum Faraday : Perubahan medan magnet (B) dapat menimbulkan medan listrik (E).
Didorong oleh keyakinan atas keteraturan dan kerapian hukum-hukum alam, Maxwell berpendapat bahwa masih ada kekurangan satu aturan kelistrikan yang masih belum terungkap secara empirik. Jika perubahan medan magnet dapat menimbulkan perubahan medan listrik maka perubahan medan listrik pasti dapat menimbulkan perubahan medan magnet, demikianlah keyakinan Maxwell.
Dengan pengetahuan matematika yang dimilikinya, secara cermat Maxwell membangun teori yang dikenal sebagai teori gelombang elektromagnetik. Baru setelah bertahun-tahun Maxwell tiada, teorinya dapat diuji kebenarannya melalui percobaan-percobaan. Menurut perhitungan secara teoritik, kecepatan gelombang elektromagnetik hanya bergantung pada permitivitas ruang hampa ( εo) dan permeabilitas ruang hampa (µo ).

Dengan memasukkan εo= 8,85 . 1012 C2/N.m2 dan μo = 4π.107 Wb/A.m
diperoleh nilai c = 3.108 m/s, nilai yang sama dengan kecepatan cahaya.
Oleh sebab itu Maxwell mempunyai cukup alasan untuk menganggap cahaya adalah gelombang elektromagnetik. Oleh karena itu konsep gelombang elektromagnetik ini merupakan penyokong teori Huygens tentang cahaya sebagai gerak gelombang.

Comments

gerak

Beranda > Artikel > Gerak Waktu dalam Peristiwa

Gerak Waktu dalam Peristiwa


time-warps600x600Dalam sebuah novel fisika Alan Lightman yang berjudul “Einstein’s Dreams”, ada sebuah paragraf yang sangat menarik :
“Andaikan waktu adalah suatu lingkaran, yang mengitari dirinya sendiri. Demikian juga dunia, akan selalu mengitari dirinya sendiri, orang tidah tahu, bahwa setiap saat dia menjalani kehidupan mereka kembali.

Pedagang tidak merasa bahwa mereka akan saling menawar lagi dan lagi. Politikus tidak tahu bahwa mereka akan berseru dari mimbar berulang-ulang dalam putaran waktu. Orang tua menikmati sepuas-puasnya tawa pertama anak-anak mereka seolah-olah tak akan mendengar lagi. Sepasang suami istri yang pertama kali bermain cinta malu-malu melepas busana, mereka semua tidak tahu bahwa akan terulang lagi tanpa henti, persis sebelumnya.

Kemana?

Lalu kemana sebenarnya perginya waktu? Kenapa yang tersisa hanya kenangan-kenangan yang bagai kerak di dasar sungai, yang mengendap dalam pikiran kita, menunggu hujan yang akan melarutkannya. Kapan saat ini menjadi masa lalu, dan kemana perginya masa lalu. Kalau Al-Ghozaly menyatakan bahwa hal yang paling jauh dari kita adalah masa lalu, tetapi ada juga pepatah yang menyatakan bahwa seseorang yang lupa akan masa lalunya akan ditakdirkan untuk mengulanginya.

Dalam Teks Ayat suci disebutkan bahwa malaikat jibril menuju Dimensi langit hanya sekelebat yang takarannya adalan 50 tahun waktu bumi, dengan demikian sangatlah benar bahwa waktu adalah relative, tergantung kecepatan kita mengarunginya. Dan waktu adalah penanda sebuah peristiwa, dimana kadang terjadi secara berulang-ulang. Peristiwa yang sedetik telah lewat akan menjadi sebuah kenangan. Peristiwa , sekali terjadi akan kehilangan sebuah realitas. Yang tertinggal adalah bagaimana kita memberi makna dan mengambil hikmah dari sebuah peristiwa yang kita lalui.

Menurut penulis setiap kali kita mengalami sebuah peristiwa apapun pada diri kita, kegembiraan, kesedihan, duka, cinta, bahagia, tangis, tawa, semua fenomena yang ada, paling tidak kita harus bisa mengambil hikmah atau mendapatkan suatu hal-hal yang baru sebagai bekal kehidupan kita selanjutnya dalam mengarungi samudra waktu. Sebuah peristiwa bisa kita jadikan sebagai sebuah jawaban dari rasa penasaran dan kebelumtahu-an kita. Sebagai suatu misal kenapa kita harus merasakan Jatuh cinta, karena sebagai jawaban dari rasa penasaran keingintahuan kita tentang jatuh cinta. Kenapa harus ada air mata yang jatuh saat kesedihan, biar kita bisa berempati atau bahasa jawa-nya tepo sliro (merasakan penderitaan orang lain), dan peristiwa-peristiwa lainnya yang bisa menjawab kebelumtahuan kita.

Pencerahan

Sebuah peristiwa bisa dijadikan sebagai pencerahan bagi kita, bisa menimbulkan sebuah inspirasi baru untuk mencipta sesuatu. Peristiwa jatuhnya sebuah apel dari pohon, menjadikan seorang Newton, cukup untuk menemukan sebuah teori gravitasi. Sebuah bencana akan memberikan pencerahan bagi kita untuk kembali menyerahkan semuanya pada Tuhan setelah berbagai macam ikhtiar yang kita lakukan. Semua berpulang pada kita untuk memaknai sebuah peristiwa yang terjadi.

Sebuah peristiwa bisa juga digunakan sebagai pembuktian atau penguatan Pendapat yang telah kita miliki dan kita yakini. Kejadian-kejadian yang bermakna spiritual biasanya sudah kita yakini sebelumnya apapun agama dan keyakinan kita. Suatu misal peristiwa Isra’ dan Mi’raj Rasulullah SAW yang kalo dilihat hanya dengan “Ilmiah semata” akan terasa controversial. Tetapi kalo sudah ada keyakinan sebelumnya, peristiwa tersebut akan menguatkan pendapat yang telah kita yakini tentang keAgungan Tuhan.

Memang ada kalanya, suatu peristiwa dengan mudah dapat dijelaskan melalui ilmu pengetahuan dan tekhnologi, tetapi masih banyak juga ilmu pengetahuan dan tekhnologi belum mampu menguak hakikat dari suatu peristiwa. Bidang inilah sebenarnya yang harus menjadi tantangan bagi kita semua untuk selalu iqro’ (membaca), berpikir, dan bekerja keras dalam rangka ikhtiar untuk memahami peristiwa-peristiwa yang oleh Tuhan sengaja diciptakan untuk meningkatkan derajat keilmuan kita. Pada akhirnya hasil dari Ikhtiar kita harus bermuara pada semakin kuatnya keyakinan kita akan Keagungan Tuhan.

Waktu dan peristiwa tergantung bagaimana kita memaknainya, bisa berjalan terasa lambat atau cepat yang semuanya akan melahirkan kenangan. Saat kita menantikan sesuatu yang kita harapkan, waktu bisa sedemikian lambat-nya, ada kalanya waktu seakan bergerak sangat cepat yang kita serasa ingin menahannya sedetik saja, saat-saat terindah yang kita miliki.

Demikianlah waktu, maka menurut penulis apa yang ditulis seniman besar kita, yang meninggal di usia masih muda Chairil Anwar dalam sebaris Puisinya:
“Hidup hanya menunda kekalahan”.
Bukan sebagai sebuah pesimisme dalam menghadapi hidup, tetapi lebih kepada kepasrahan kepada sang Pencipta bahwa pada akhirnya kita akan dikalahkan oleh usia dan Waktu.
Ya pada akhirnya…..

listrik magnet

Dalam bidang kelistrikan ada konsep yang sangat berguna, yaitu konsep induksi silang (mutual induction) atau ada juga yang menyebutnya sebagai induksi timbal-balik. Konsep ini merupakan awal mula dari pengembangan elektronika telekomunikasi. Aplikasi induksi timbal-balik digunakan untuk mentransmisikan sinyal elektromagnet melalui ruang dari satu perangkat ke perangkat lain. Di sini akan dibahas konsep dasar dari induksi silang sebagai dasar pemahaman bagi pengertian lebih lanjut tentang elektronika komunikasi.

arus listrik dalam loop kawat menginduksi medan magnet

arus listrik dalam loop kawat menginduksi medan magnet

Sebelumnya, kamu sudah mempelajari tentang medan magnet, bukan? Dalam pembahasan tentang medan magnet kamu sudah belajar bagaimana muatan listrik yang bergerak atau arus listrik dapat menghasilkan medan magnet. Bukankah begitu? Apakah kamu masih ingat, siapakah tokoh yang memperkenalkan konsep ini? Ya, dia adalah Hans Christian Oersted, seorang ahli fisika yang berasal dari Denmark. Konsep medan magnet yang dihasilkan oleh arus listrik dirumuskan secara lengkap oleh Ampere, dan dikenal dengan hukum Ampere. Konsep arus listrik yang dapat menghasilkan (menginduksi) medan magnet dikenal sebagai induksi magnet.

Selain itu, sebelumnya kamu juga sudah mempelajari bagaimana medan magnet yang berubah-ubah terhadap waktu juga dapat menghasilkan arus listrik, bukan? Apakah kamu masih ingat siapakah tokoh yang berjasa dalam mengembangkan konsep ini? ya, dia adalah Michael Faraday, seorang tokoh terkemuka dalam fisika yang berkebangsaan Inggris. Konsep medan listrik (dalam bentuk arus listrik) yang dihasilkan (diinduksi) dari medan magnet yang berubah-ubah terhadap waktu dikenal sebagai induksi elektromagnet.

medan magnet yang berubah-ubah menghasilkan arus listrik

medan magnet yang berubah-ubah menghasilkan arus listrik

Kedua konsep ini sangat berguna untuk memahami pengertian induksi silang yang akan dijelaskan berikut ini.

Induksi silang dapat terjadi pada dua buah rangkaian listrik. Salah satu rangkaian tersebut dialiri arus listrik sedangkan rangkaian yang lain tidak. Melalui peristiwa induksi silang, rangkaian yang dialiri arus listrik dapat “menginduksi” (baca: mentransmisikan listrik ke) rangkaian yang lain sehingga arus listrik dapat dihasilkan dalam rangkaian ini. untuk lebih jelasnya, coba kamu perhatikan gambar berikut ini.

induksi silang antara dua rangkaian

induksi silang antara dua rangkaian

Berdasarkan prinsip Ampere bahwa arus listrik dapat menginduksi medan magnet, pada rangkaian dua (#2) arus listrik (i) dalam rangkaian dapat menghasilkan medan magnet (B). arus listrik yang digunakan dalam rangkaian haruslah arus yang berubah-ubah besarnya (bisa dilakukan dengan menggunakan arus bolak-balik). Mengapa? Coba kamu cari alasannya. Selanjutnya medan magnet ini menghasilkan fluks magnet yang menembus rangkaian listrik satu (#1) secara tegak lurus. Karena medan magnet yang menginduksi rangkaian listrik berubah-ubah maka arus listrik akan dihasilkan dalam rangkaian kedua ini. (Jadi, pertanyaan tadi sudah terjawab, kan).

Dihasilkannya arus listrik pada rangkaian kedua yang disebabkan oleh medan magnet dari rangkaian listrik lain yang dialiri arus listrik ini di mana antara kedua rangkaian tidak saling berhubungan dan terpisah oleh ruang merupakan konsep dasar dari induksi silang. Bagaimana, sudah paham kan sekarang?

Prinsip induksi silang dapat juga dimanfaatkan untuk memahami cara kerja transformator (trafo). Tahukah kamu, apa yang dimaksud dengan transformator? Secara singkat dijelaskan di sini bahwa transformator adalah alat untuk menaikkan atau menurunkan tegangan listrik. Pembahasan tentang trafo akan diberikan dalam bahasan tersendiri.

CRBR004312Apakah kamu dapat menghubungkan konsep induksi silang yang sudah dibahas di sini dengan bagaimana cara kerja telepon seluler, radio, atau TV? Telepon seluler dapat menerima sinyal listrik dari perangkat lain walaupun kedua perangkat tidak saling bersentuhan atau berhubungan. Demikian juga dengan radio dan TV. Secara luas juga mencakup perangkat wireless (tanpa kabel) yang saat ini sangat bermanfaat dan banyak digunakan sehari-hari. Tentu saja konsep induksi silang dapat digunakan untuk menjelaskan peristiwa tersebut. Penjelasan lebih lanjut tentang cara kerja baik telepon seluler, radio, TV, maupun perangkat wireless lainnya akan dibahas dalam materi gelombang Elektromagnet

usaha dan energi

Usaha dan energi

Pengantar

Dalam kehidupan sehari-hari dirimu pasti sering mendengar atau menggunakan kata “usaha” dan “energi”. Kata “usaha” yang sering kita gunakan dalam kehidupan sehari-hari memiliki makna yang berbeda dengan pengertian usaha dalam fisika. Pada kesempitan ini kita akan belajar pokok bahasan usaha dan energi. Pokok bahasan Usaha dan Energi yang telah anda pelajari di SMP masih bersifat kualitatif dan mungkin sekarang dirimu sudah melupakan semuanya ;) . Oleh karena itu gurumuda mencoba membantu dirimu memahami kembali (syukur kalo masih diingat) konsep Usaha dan Energi secara lebih mendalam dan tentu saja disertai juga dengan penjelasan kuantitatif (ada rumusnya). Akhirnya, semoga dirimu tidak berkecil hati, apalagi sampai kecewa dan putus asa karena ada rumus. Pahamilah dengan baik dan benar konsep Usaha dan Energi yang dijelaskan, maka dirimu tidak akan meringis ketika menatap rumus… selamat belajar ya, semoga sukses sampai di tujuan :)

Pada pokok bahasan fisika sebelumnya, kita telah belajar tentang gerak benda dan hubungannya dengan Gaya yang mempengaruhi gerak benda (Hukum Newton tentang Gerak). Kali ini kita menganalisis gerak benda dalam kaitannya dengan Usaha dan Energi. Usaha dan Energi merupakan besaran skalar sehingga analisis kita menjadi lebih mudah dibandingkan dengan ketika kita mempelajari gaya. Konsep usaha dan energi sangat penting, sehingga sangat dianjurkan supaya dipelajari dengan penuh semangat.

USAHA

Usaha alias Kerja yang dilambangkan dengan huruf W (Work-bahasa inggris), digambarkan sebagai sesuatu yang dihasilkan oleh Gaya (F) ketika Gaya bekerja pada benda hingga benda bergerak dalam jarak tertentu. Hal yang paling sederhana adalah apabila Gaya (F) bernilai konstan (baik besar maupun arahnya) dan benda yang dikenai Gaya bergerak pada lintasan lurus dan searah dengan arah Gaya tersebut.

Secara matematis, usaha yang dilakukan oleh gaya yang konstan didefinisikan sebagai hasil kali perpindahan dengan gaya yang sejajar dengan perpindahan.

Persamaan matematisnya adalah :

W = F s

W adalah usaha alias kerja, F adalah gaya yang sejajar dengan perpindahan dan s adalah perpindahan.

Apabila gaya konstan tidak searah dengan perpindahan, sebagaimana tampak pada gambar di bawah, maka usaha yang dilakukan oleh gaya pada benda didefinisikan sebagai perkalian antara perpindahan dengan komponen gaya yang searah dengan perpindahan. Komponen gaya yang searah dengan perpindahan adalah F cos teta

Secara matematis dirumuskan sebagai berikut :

Usaha hanya memiliki besar dan tidak mempunyai arah karena termasuk besaran skalar. Walaupun gaya dan perpindahan termasuk besaran vektor tetapi usaha merupakan besaran skalar karena diperoleh dari perkalian skalar. Satuan Usaha dalam Sistem Internasional (SI) adalah newton-meter. Satuan newton-meter juga biasa disebut Joule ( 1 Joule = 1 N.m). menggunakan sistem CGS (Centimeter Gram Sekon), satuan usaha disebut erg. 1 erg = 1 dyne.cm. Dalam sistem British, usaha diukur dalam foot-pound (kaki-pon). 1 Joule = 107 erg = 0,7376 ft.lb.

Perlu anda pahami dengan baik bahwa sebuah gaya melakukan usaha apabila benda yang dikenai gaya mengalami perpindahan. Jika benda tidak berpindah tempat maka gaya tidak melakukan usaha. Agar memudahkan pemahaman anda, bayangkanlah anda sedang menenteng buku sambil diam di tempat. Walaupun anda memberikan gaya pada buku tersebut, sebenarnya anda tidak melakukan usaha karena buku tidak melakukan perpindahan. Ketika anda menenteng atau menjinjing buku sambil berjalan lurus ke depan, ke belakang atau ke samping, anda juga tidak melakukan usaha pada buku. Pada saat menenteng buku atau menjinjing tas, arah gaya yang diberikan ke atas, tegak lurus dengan arah perpindahan. Karena tegak lurus maka sudut yang dibentuk adalah 90o. Cos 90o = 0, karenanya berdasarkan persamaan di atas, nilai usaha sama dengan nol. Contoh lain adalah ketika dirimu mendorong tembok sampai puyeng… jika tembok tidak berpindah tempat maka walaupun anda mendorong sampai banjir keringat, anda tidak melakukan usaha. Kita dapat menyimpulkan bahwa sebuah gaya tidak melakukan usaha apabila gaya tidak menghasilkan perpindahan dan arah gaya tegak lurus dengan arah perpindahan.

Contoh Soal 1 :

Sebuah peti kemas bermassa 50 kg yang terletak pada lantai ditarik horisontal sejauh 2 meter dengan gaya 100 N oleh seorang buruh pelabuhan. Lantai tersebut agak kasar sehingga gaya gesekan yang diberikan pada karung beras sebesar 50 N. Hitunglah usaha total yang dilakukan terhadap karung berisi beras tersebut…

Panduan jawaban :

Sebelum menghitung usaha total, terlebih dahulu kita hitung usaha yang dilakukan oleh buruh karung dan usaha yang dilakukan oleh gaya gesekan. Kita tetapkan arah kanan bertanda positif sedangkan arah kiri negatif. (b = buruh, g = gesekan, N = gaya normal, w = mg = gaya berat). Gaya gesekan berlawanan arah dengan arah gerakan benda sehingga bertanda negatif.

Pada soal di atas, terdapat empat gaya yang bekerja pada peti kemas, yakni gaya tarik buruh (sejajar dengan perpindahan peti kemas), gaya gesekan (berlawanan arah dengan perpindahan peti), gaya berat dan gaya normal (tegak lurus arah perpindahan, sudut yang terbentuk adalah 90o).

Untuk mengetahui usaha total, terlebih dahulu kita hitung besar usaha yang dilakukan masing-masing gaya tersebut.

Usaha yang dilakukan oleh buruh pelabuhan :

Wb = Fb.s = (100 N) (2 m) = 200 N.m

Usaha yang dilakukan oleh Gaya gesekan :

Wg = Fg.s = (-50 N) (2 m) = -100 N.m

Usaha yang dilakukan oleh gaya berat :

Ww = Fw.s = (mg) (2 m) cos 90o = 0

Usaha yang dilakukan oleh gaya normal :

WN = FN.s = (mg) (2 m) cos 90o = 0

Usaha total = Wb + Wg + Ww + WN = (200 N.m) + (-100 N.m) + 0 + 0 = 100 N.m = 100 Joule

Contoh Soal 2 :

Seorang anak menarik mobil mainan menggunakan tali dengan gaya sebesar 20 N. Tali tersebut membentuk sudut 30o terhadap permukaan tanah dan besar gaya gesekan tanah dengan roda mobil mainan adalah 2 N. Jika mobil mainan berpindah sejauh 10 meter, berapakah usaha yang dilakukan anak tersebut ?

Panduan jawaban :

Pada dasarnya soal ini sama dengan contoh soal 1. Pada soal ini terdapat sudut yang dibentuk antara gaya dengan arah horisontal, sehingga komponen gaya tarik yang dipakai adalah F cos teta (sejajar dengan arah perpindahan)

Untuk mengetahui usaha total, terlebih dahulu kita hitung besar usaha yang dilakukan masing-masing gaya : (A = anak, g = gesekan, w = berat dan N = normal)

Usaha yang dilakukan oleh Gaya gesekan :

Wg = Fg.s = (-2 N) (10 m) = -20 N.m

Usaha yang dilakukan oleh gaya berat :

Ww = Fw.s = (mg) (2 m) cos 90o = 0

Usaha yang dilakukan oleh gaya normal :

WN = FN.s = (mg) (2 m) cos 90o = 0

Usaha total :

ENERGI

Segala sesuatu yang kita lakukan dalam kehidupan sehari-hari membutuhkan energi. Untuk bertahan hidup kita membutuhkan energi yang diperoleh dari makanan. Setiap kendaraan membutuhkan energi untuk bergerak dan energi itu diperoleh dari bahan bakar. Hewan juga membutuhkan energi untuk hidup, sebagaimana manusia dan tumbuhan.

Energi merupakan salah satu konsep yang paling penting dalam fisika. Konsep yang sangat erat kaitannya dengan usaha adalah konsep energi. Secara sederhana, energi merupakan kemampuan melakukan usaha. Definisi yang sederhana ini sebenarnya kurang tepat atau kurang valid untuk beberapa jenis energi (misalnya energi panas atau energi cahaya tidak dapat melakukan kerja). Definisi tersebut hanya bersifat umum. Secara umum, tanpa energi kita tidak dapat melakukan kerja. Sebagai contoh, jika kita mendorong sepeda motor yang mogok, usaha alias kerja yang kita lakukan menggerakan sepeda motor tersebut. Pada saat yang sama, energi kimia dalam tubuh kita menjadi berkurang, karena sebagian energi kimia dalam tubuh berubah menjadi energi kinetik sepeda motor. Usaha dilakukan ketika energi dipindahkan dari satu benda ke benda lain. Contoh ini juga menjelaskan salah satu konsep penting dalam sains, yakni kekekalan energi. Jumlah total energi pada sistem dan lingkungan bersifat kekal alias tetap. Energi tidak pernah hilang, tetapi hanya dapat berubah bentuk dari satu bentuk energi menjadi bentuk energi lain. Mengenai Hukum Kekekalan Energi akan kita kupas tuntas dalam pokok bahasan tersendiri. (tuh ada linknya di bawah)…..

Dalam kehidupan sehari-hari terdapat banyak jenis energi. Energi kimia pada bahan bakar membantu kita menggerakan kendaraan, demikian juga energi kimia pada makanan membantu makhluk hidup bertahan hidup dan melakukan kerja. Dengan adanya energi listrik, kita bisa menonton TV atau menyalakan komputer sehingga bisa bermain game sepuasnya. Ini hanya beberapa contoh dari sekian banyak jenis energi dalam kehidupan kita. Misalnya ketika kita menyalakan lampu neon, energi listrik berubah menjadi energi cahaya. Energi listrik juga bisa berubah menjadi energi panas (setrika listrik), energi gerak (kipas angin) dan sebagainya. Banyak sekali contoh dalam kehidupan kita, dirimu bisa memikirkan contoh lainnya. Secara umum, energi bermanfaat bagi kita ketika energi mengalami perubahan bentuk, misalnya energi listrik berubah menjadi energi gerak (kipas angin), atau energi kimia berubah menjadi energi gerak (mesin kendaraan).

Pada kesempatan ini kita akan mempelajari dua jenis energi yang sebenarnya selalu kita jumpai dalam kehidupan sehari-hari, yakni energi potensial dan energi kinetik translasi. Energi potensial dapat berubah bentuk menjadi energi kinetik ketika benda bergerak lurus dan sebaliknya energi kinetik juga bisa berubah bentuk menjadi energi potensial. Total kedua energi ini disebut energi mekanik, yang besarnya tetap alias kekal. Mari kita pelajari kedua jenis energi ini secara lebih mendalam…

Referensi :

Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga

Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga

tekanan

Tekanan dalam Fluida

tekanan pada fluidaPengantar

Pernahkah dirimu meminum es teh atau es sirup ? wah, jangankan es teh, semua minuman botol dan minuman kaleng pernah disikat :) saking kehausan, botol dan kalengnya juga dijilat… hehehe.. pisss.. maksud gurumuda, pernahkah dirimu meminum minuman menggunakan pipet alias penyedot ? kalau belum, segera meluncur ke warung atau toko terdekat dan bilang saja pada pelayan toko atau warung makan : “pak/bu.. boleh pinjam pipet sebentar ?…” Jangan lupa bawa uang receh untuk membeli seandainya permintaan anda di tolak. Setelah ada pipet, silahkan pergi ke ruang makan, ambil segelas air bening dan lakukan percobaan kecil-kecilan berikut ini… biar lebih keren, kali anda minum air putih (atau air bening ?) menggunakan pipet alias penyedot.. Nah, air putih kini terasa lebih nikmat. Setelah puas minum, sekarang coba anda masukan pipet tadi ke dalam gelas yang berisi air, lalu angkat kembali pipet tersebut. Apa yang anda amati ? biasa saja tuh.. ;) Oke.. sekarang, silahkan masukan pipet sekali lagi ke dalam gelas yang berisi air. Setelah itu, tutup salah satu ujung pipet (ujung pipet yang berada di luar gelas) menggunakan jari telunjuk anda. Nah, coba dirimu angkat pipet itu sambil tetap menutup lubang pipet bagian atas. Sulap fisika dimulai… aneh bin ajaib. Air terperangkap dalam pipet ? kok bisa ya ? waduh… bagaimanakah saya menjelaskannya ? gampang…. Ingin tahu mengapa demikian ? mari kita pelajari pokok bahasan Tekanan dengan penuh semangat. Setelah mempelajari pokok bahasan tekanan, dirimu akan dengan mudah menjelaskannya. Selamat belajar ya :)

Konsep Tekanan pada Fluida

Dalam ilmu fisika, Tekanan diartikan sebagai gaya per satuan luas, di mana arah gaya tegak lurus dengan luas permukaan. Secara matematis, tekanan dapat dinyatakan dengan persamaan berikut ini :

P = tekanan, F = gaya dan A = luas permukaan. Satuan gaya (F) adalah Newton (N), satuan luas adalah meter persegi (m2). Karena tekanan adalah gaya per satuan luas maka satuan tekanan adalah N/m2. Nama lain dari N/m2 adalah pascal (Pa). Pascal dipakai sebagai satuan Tekanan untuk menghormati om Blaise Pascal. Kita akan berkenalan lebih dalam dengan om Pascal pada pokok bahasan Prinsip Pascal.

Ketika kita membahas Fluida, konsep Tekanan menjadi sangat penting. Ketika fluida berada dalam keadaan tenang, fluida memberikan gaya yang tegak lurus ke seluruh permukaan kontaknya. Misalnya kita tinjau air yang berada di dalam gelas; setiap bagian air tersebut memberikan gaya dengan arah tegak lurus terhadap dinding gelas. jadi setiap bagian air memberikan gaya tegak lurus terhadap setiap satuan luas dari wadah yang ditempatinya, dalam hal ini gelas. Demikian juga air dalam bak mandi atau Air kolam renang. Ini merupakan salah satu sifat penting dari fluida statis alias fluida yang sedang diam. Gaya per satuan luas ini dikenal dengan istilah tekanan.

Mengapa pada fluida diam arah gaya selalu tegak lurus permukaan ? masih ingatkah dirimu dengan eyang Newton ? nah, Hukum III Newton yang pernah kita pelajari mengatakan bahwa jika ada gaya aksi maka akan ada gaya reaksi yang besarnya sama tetapi berlawanan arah. Ketika fluida memberikan gaya aksi terhadap permukaan, di mana arah gaya tidak tegak lurus, maka permukaan akan memberikan gaya reaksi yang arahnya juga tidak tegak lurus. Hal ini akan menyebabkan fluida mengalir. Tapi kenyataannya khan fluida tetap diam. Jadi kesimpulannya, pada fluida diam, arah gaya selalu tegak lurus permukaan wadah yang ditempatinya.

Sifat penting lain dari fluida diam adalah fluida selalu memberikan tekanan ke semua arah. Masa sich ? Untuk lebih memahami penjelasan ini, silahkan masukan sebuah benda yang bisa melayang ke dalam gelas atau penampung (ember dkk) yang bersisi air. Jika air sangat tenang, maka benda yang anda masukan tadi tidak bergerak karena pada seluruh permukaan benda tersebut bekerja tekanan yang sama besar. Jika tekanan air tidak sama besar maka akan ada gaya total, yang akan menyebabkan benda bergerak (ingat hukum II Newton)

Pengaruh kedalaman terhadap Tekanan

Pada penjelasan di atas, gurumuda sudah menjelaskan kepada dirimu tentang dua sifat fluida statis (fluida diam), yakni memberikan tekanan ke segala arah dan gaya yang disebabkan oleh tekanan fluida selalu bekerja tegak lurus terhadap permukaan benda yang bersentuhan dengan fluida tersebut. Ilustrasi yang kita gunakan adalah zat cair (air). Nah, bagaimana pengaruh kedalaman (atau ketinggian) terhadap tekanan ? apakah tekanan air laut pada kedalaman 10 meter sama dengan tekanan air laut pada kedalaman 100 meter, misalnya ?

Semua penyelam akan setuju jika gurumuda mengatakan bahwa tekanan di danau atau di lautan akan bertambah jika kedalamannya bertambah. Silahkan menyelam dalam air kolam atau air sumur… hehe.. lebih keren dirimu pernah mandi air laut dan bahkan pernah menyelam ke bagian laut yang dalam. Semakin dalam menyelam, perbedaan tekanan akan membuat telinga kita sakit. Gurumuda pernah mencobanya di kampoeng. Kok bisa ? Agar dirimu lebih memahami penjelasan gurumuda, mari kita tinjau tekanan air pada sebuah wadah sebagaimana tampak pada gambar. Tinggi kolom cairan adalah h dan luas penampangnya A. Bagaimana tekanan air di dasar wadah ?

Keterangan : w adalah berat air, h = ketinggian kolom air dalam wadah yang berbentuk silinder, A = luas permukaan dan P adalah tekanan.

Massa kolom zat cair adalah :

Jika kita masukan ke dalam persamaan Tekanan, maka akan diperoleh :

Pa = tekanan atmosfir. Pada gambar di atas tidak digambarkan Pa, tapi dalam kenyataannya, bila wadah yang berisi air terbuka maka pada permukaan air bekerja juga tekanan atmosfir yang arahnya ke bawah. Tergantung permukaan wadah terbuka ke mana. Jika permukaan wadah terbuka ke atas seperti pada gambar di atas, maka arah tekanan atmosfir adalah ke bawah. Mengenai tekanan atmosfir selengkapnya bisa dibaca pada penjelasan selanjutnya. Tuh di bawah…

Berdasarkan persamaan di atas, tampak bahwa tekanan berbanding lurus dengan massa jenis dan kedalaman zat cair (percepatan gravitasi bernilai tetap). Jika kedalaman zat cair makin bertambah, maka tekanan juga makin besar. Ingat bahwa cairan hampir tidak termapatkan akibat adanya berat cairan di atasnya, sehingga massa jenis cairan bernilai konstan di setiap permukaan. Jika perbedaan ketinggian sangat besar (untuk laut yang sangat dalam), massa jenis sedikit berbeda. Tapi jika perbedaan ketinggian tidak terlalu besar, pada dasarnya massa jenis zat cair sama (atau perbedaanya sangat kecil sehingga diabaikan).

Kita juga bisa menggunakan persamaan di atas untuk menghitung perbedaan tekanan pada setiap kedalaman yang berbeda. Kita oprek lagi persamaan di atas menjadi :

Tekanan Atmosfir (Tekanan Udara)

Sadar atau tidak setiap hari kita selalu “diselimuti” oleh udara. Ketika kita menyelam ke dalam air, semua bagian tubuh kita diselubungi oleh air. Semakin dalam kita menyelam, semakin besar tekanan yang kita rasakan. Nah, sebenarnya setiap hari kita juga diselubungi oleh atmosfir yang selalu menekan seluruh bagian tubuh kita seperti ketika kita berada di dalam air. Seperti pada air laut, permukaan bumi bisa kita ibaratkan dengan “dasar laut” atmosfir. Jika benar atmosfir juga menekan seluruh bagian tubuh kita setiap saat, mengapa kita tidak merasakannya, sebagaimana jika kita berada di dasar laut ? jawabannya adalah karena sel-sel tubuh kita mempertahankan tekanan dalam yang besarnya hampir sama dengan tekanan luar. Hal ini yang membuat kita tidak merasakan efek perbedaan tekanan tersebut.

Pada pembahasan sebelumnya, telah dijelaskan bahwa kedalaman zat cair mempengaruhi besarnya tekanan zat cair tersebut. Semakin dalam lautan, semakin besar tekanan air laut pada kedalaman tertentu. Bagaimana dengan atmosfir alias udara ?

Sebagaimana setiap fluida, tekanan atmosfir bumi juga berubah terhadap kedalaman (atau ketinggian). Tetapi tekanan atmosfir bumi agak berbeda dengan zat cair. Perubahan massa jenis zat cair sangat kecil untuk perbedaan kedalaman yang tidak sangat besar, sehingga massa jenis zat cair dianggap sama. Hal ini berbeda dengan massa jenis atmosfir bumi. Massa jenis atmosfir bumi bervariasi cukup besar terhadap ketinggian. Massa jenis udara di setiap ketinggian berbeda-beda sehingga kita tidak bisa menghitung tekanan atmosfir menggunakan persamaan yang telah diturunkan di atas. Selain itu tidak ada batas atmosfir yang jelas dari mana h dapat dukur. Tekanan atmosfir juga bervariasi terhadap cuaca. Jika demikian, bagaimana kita mengetahui besarnya tekanan udara ? untuk mengetahui tekanan atmosfir, kita melakukan pengukuran.

Pengukuran Tekanan

Pernahkah dirimu mendengar nama paman Torricelli ? kalau belum, mari kita berkenalan dengan paman Torricelli. Paman Evangelista Torricelli (1608-1647), murid eyang Galileo, membuat suatu metode alias cara untuk mengukur tekanan atmosfir pada tahun 1643 menggunakan barometer air raksa hasil karyanya. Barometer tersebut berupa tabung kaca yang panjang, di mana dalam tabung tersebut diisi air raksa. Nah, tabung kaca yang berisi air raksa tersebut dibalik dalam sebuah piring yang juga telah diisi air raksa (lihat gambar di bawah ya)

Catatan : dirimu jangan bingung mengapa permukaan air raksa melengkung. Nanti akan gurumuda jelaskan pada pokok bahasan tegangan permukaan

Ketika tabung kaca yang berisi air raksa dibalik maka pada bagian ujung bawah tabung (pada gambar terletak di bagian atas) tidak terisi air raksa, isinya cuma uap air raksa yang tekanannya sangat kecil sehingga diabaikan (p2 = 0). Pada permukaan air raksa yang berada di dalam piring terdapat tekanan atmosfir yang arahnya ke bawah (atmosfir menekan air raksa yang berada di piring). Tekanan atmosfir tersebut menyanggah kolom air raksa yang berada dalam pipa kaca. Pada gambar, tekanan atmosfir dilambangkan dengan po. Besarnya tekanan atmosfir dapat dihitung menggunakan persamaan :

Berdasarkan hasil pengukuran, rata-rata tekanan atmosfir pada permukaan laut adalah 1,013 x 105 N/m2. Besarnya tekanan atmosfir pada permukaan laut ini digunakan untuk mendefinisikan satuan tekanan lain, yakni atm (atmosfir). Jadi 1 atm = 1,013 x 105 N/m2 = 101,3 kPa (kPa = kilo pascal). Satuan tekanan lain adalah bar (sering digunakan pada meteorologi). 1 bar = 1,00 x 105 N/m2 = 100 kPa.

Bagaimana nilai tekanan atmosfir di atas diperoleh ?

Pengkurannya menggunakan prinsip yang telah ditunjukan oleh paman torricelli di atas. Tinggi kolom air raksa yang digunakan adalah 76 cm (tekanan atmosfir hanya dapat menahan kolom air raksa yang tingginya hanya mencapai 76,0 cm), di mana suhu air raksa yang digunakan tepat 0o C dan besarnya percepatan gravitasi 9,8 m/s2. massa jenis air raksa pada kondisi ini adalah 13,6 x 103 kg/m3. Sekarang kita bisa menghitung besarnya tekanan atmosfir :

Alat pengukur tekanan

Terdapat banyak alat yang digunakan untuk mengukur tekanan, di antaranya adalah manometer tabung terbuka (lihat gambar di bawah).

Pada manometer tabung terbuka, di mana tabung berbentuk U, sebagian tabung diisi dengan zat cair (air raksa atau air). Tekanan yang terukur dihubungkan dengan perbedaan dua ketinggian zat cair yang dimasukan ke dalam tabung. Besar tekanan dihitung menggunakan persamaan :

Pada umumnya bukan hasil kali pgh yang dihitung melainkan ketinggian zat cair (h) karena tekanan kadang dinyatakan dalam satuan milimeter air raksa (mmhg) atau milimeter air (mm-H2O). Nama lain mmhg adalah torr (mengenang jasa paman Evangelista Torricelli).

Selain manometer, terdapat juga pengukur lain yakni barometer aneroid, baik mekanis maupun elektrik, termasuk alat pengukur tekanan ban dkk. Alat yang digunakan oleh paman torricelli untuk mengukur tekanan atmosfir disebut juga barometer air raksa, di mana tabung kaca diisi penuh dengan air raksa kemudian dibalik ke dalam piring yang juga berisi air raksa.

Tekanan Terukur, Tekanan gauge dan Tekanan absolut

Dirimu punya mobil atau sepeda motor/sepeda-kah ? jika punya bersyukurlah. Jika belum punya, silahkan bermain ke bengkel terdekat. Amati om-om yang bekerja di bengkel… wah, jangan pelototin om-nya dong, tapi perhatikan kegiatan mereka di bengkel, khususnya ketika mengisi udara dalam ban kendaraan (mobil atau sepeda motor). Biasanya mereka menggunakan alat ukur tekanan udara. Hal ini membantu agar tekanan udara ban tidak kurang/melebihi batas yang ditentukan. Nah, ketika om-om tersebut mengisi udara dalam ban, yang mereka ukur adalah tekanan udara dalam ban saja. Tekanan atmosfir tidak diperhitungkan. Bukan hanya ketika mengukur tekanan udara dalam ban, bola sepak dkk tetapi juga sebagian besar pengukuran tekanan lainnya, tekanan atmosfir tidak diukur. Tekanan yang dikur tersebut dinamakan tekanan terukur. Lalu apa bedanya dengan tekanan absolut ?

Tekanan absolut = tekanan atmosfir + tekanan terukur. Jadi untuk mendapatkan tekanan absolut, kita menambahkan tekanan terukur dengan tekanan atmosfir. Dengan kata lain, tekanan absolut = tekanan total. Secara matematis bisa ditulis :

p = pa + pukur

misalnya jika tekanan ban yang kita ukur = 100 kPa, maka tekanan absolut adalah :

p = pa + pukur

p = 101 kPa + 100 kPa

p = 201 kPa

Besarnya tekanan absolut = 201 kPa.

Terus pa = 101 kPa (101 kilo Pascal) datangnya dari mana ? sudah gurumuda jelaskan di atas. Baca kembali kalau dirimu sudah melupakannya…

Ada satu lagi istilah, yakni tekanan gauge alias tekanan tolok. Tekanan gauge merupakan kelebihan tekanan di atas tekanan atmosfir. Misalnya kita tinjau tekanan ban sepeda motor. Ketika ban sepeda motor kempes, tekanan dalam ban = tekanan atmosfir (Tekanan atmosfir = 1,01 x 105 Pa = 101 kPa). Jika dirimu ingin mengunakan ban tersebut sehingga sepeda motor yang “ditunggangi” bisa kebut-kebutan di jalan, maka dirimu harus mengisi ban tersebut dengan udara. Ketika ban diisi udara, tekanan ban pasti bertambah. Nah, ketika tekanan ban menjadi lebih besar dari 101 kPa, maka kelebihan tekanan tersebut disebut juga tekanan gauge. Begitu….

Tugas dari Gurumuda

Setelah mempelajari pokok bahasa Tekanan dalam fluida, silahkan menjawab pertanyaan berikut ini. Jawabannya akan kita bahas melalui kolom komentar…

Pertanyaan pertama :

Pada awal tulisan ini, dikatakan bahwa air bisa terperangkap dalam pipet. Mengapa demikian ? ini adalah sulap fisika. Hehe…. Apakah dirimu mengetahui jawabannya ? silahkan posting melalui kolom komentar saja ya… nanti akan dijelaskan. Jangan pernah takut salah menjawab… namanya juga manusia pasti bisa berbuat salah.

Pertanyaan kedua :

Pada penjelasan di atas, dikatakan bahwa tekanan atmosfir hanya mampu menahan kolom air raksa yang ketinggiannya hanya mencapai 76 cm. Ternyata tekanan atmosfir juga hanya mampu menahan kolom air (H2O) yang tingginya 10,3 meter (misalnya air yang ada dalam pipa). Pertanyaannya, dapatkah kita menyedot air dalam sumur yang kedalamannya lebih dari 10,3 meter menggunakan pompa vakum ? air dialirkan melalui pipa.

(pompa vakum tu pompa yang biasa dipakai jaman dulu untuk memompa air dari sumur. Mungkin sekarang jarang dipakai. Coba dirimu tanya pada ayah, ibu atau kakek atau nenek. Jangan tanya ke adikmu, ntar dirinya cuma bengong)

Referensi :

Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga

Kanginan, Marthen, 2000, Fisika 2000, SMU kelas 1, Caturwulan 2, Jakarta : Penerbit Erlangga

Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga

Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga